本次共计算 1 个题目:每一题对 x 求 3 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{a}^{x} - {a}^{sin(x)} 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {a}^{x} - {a}^{sin(x)}\right)}{dx}\\=&({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)})) - ({a}^{sin(x)}((cos(x))ln(a) + \frac{(sin(x))(0)}{(a)}))\\=& - {a}^{sin(x)}ln(a)cos(x) + {a}^{x}ln(a)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( - {a}^{sin(x)}ln(a)cos(x) + {a}^{x}ln(a)\right)}{dx}\\=& - ({a}^{sin(x)}((cos(x))ln(a) + \frac{(sin(x))(0)}{(a)}))ln(a)cos(x) - \frac{{a}^{sin(x)}*0cos(x)}{(a)} - {a}^{sin(x)}ln(a)*-sin(x) + ({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))ln(a) + \frac{{a}^{x}*0}{(a)}\\=& - {a}^{sin(x)}ln^{2}(a)cos^{2}(x) + {a}^{sin(x)}ln(a)sin(x) + {a}^{x}ln^{2}(a)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( - {a}^{sin(x)}ln^{2}(a)cos^{2}(x) + {a}^{sin(x)}ln(a)sin(x) + {a}^{x}ln^{2}(a)\right)}{dx}\\=& - ({a}^{sin(x)}((cos(x))ln(a) + \frac{(sin(x))(0)}{(a)}))ln^{2}(a)cos^{2}(x) - \frac{{a}^{sin(x)}*2ln(a)*0cos^{2}(x)}{(a)} - {a}^{sin(x)}ln^{2}(a)*-2cos(x)sin(x) + ({a}^{sin(x)}((cos(x))ln(a) + \frac{(sin(x))(0)}{(a)}))ln(a)sin(x) + \frac{{a}^{sin(x)}*0sin(x)}{(a)} + {a}^{sin(x)}ln(a)cos(x) + ({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))ln^{2}(a) + \frac{{a}^{x}*2ln(a)*0}{(a)}\\=& - {a}^{sin(x)}ln^{3}(a)cos^{3}(x) + 3{a}^{sin(x)}ln^{2}(a)sin(x)cos(x) + {a}^{sin(x)}ln(a)cos(x) + {a}^{x}ln^{3}(a)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!