本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(arcsin(x) - arctan(x)){\frac{1}{x}}^{2}({e}^{x} - 1) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{{e}^{x}arcsin(x)}{x^{2}} - \frac{arcsin(x)}{x^{2}} - \frac{{e}^{x}arctan(x)}{x^{2}} + \frac{arctan(x)}{x^{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{{e}^{x}arcsin(x)}{x^{2}} - \frac{arcsin(x)}{x^{2}} - \frac{{e}^{x}arctan(x)}{x^{2}} + \frac{arctan(x)}{x^{2}}\right)}{dx}\\=&\frac{-2{e}^{x}arcsin(x)}{x^{3}} + \frac{({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))arcsin(x)}{x^{2}} + \frac{{e}^{x}(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{x^{2}} - \frac{-2arcsin(x)}{x^{3}} - \frac{(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{x^{2}} - \frac{-2{e}^{x}arctan(x)}{x^{3}} - \frac{({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))arctan(x)}{x^{2}} - \frac{{e}^{x}(\frac{(1)}{(1 + (x)^{2})})}{x^{2}} + \frac{-2arctan(x)}{x^{3}} + \frac{(\frac{(1)}{(1 + (x)^{2})})}{x^{2}}\\=&\frac{-2{e}^{x}arcsin(x)}{x^{3}} + \frac{{e}^{x}arcsin(x)}{x^{2}} + \frac{{e}^{x}}{(-x^{2} + 1)^{\frac{1}{2}}x^{2}} + \frac{2arcsin(x)}{x^{3}} - \frac{{e}^{x}}{(x^{2} + 1)x^{2}} + \frac{2{e}^{x}arctan(x)}{x^{3}} - \frac{{e}^{x}arctan(x)}{x^{2}} - \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}x^{2}} - \frac{2arctan(x)}{x^{3}} + \frac{1}{(x^{2} + 1)x^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!