本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(ln(sqrt(\frac{(1 - x)}{(1 + x)}))*3) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 3ln(sqrt(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)}))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 3ln(sqrt(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)}))\right)}{dx}\\=&\frac{3(-(\frac{-(1 + 0)}{(x + 1)^{2}})x - \frac{1}{(x + 1)} + (\frac{-(1 + 0)}{(x + 1)^{2}}))*\frac{1}{2}}{(sqrt(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)}))(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}}\\=&\frac{3x}{2(x + 1)^{2}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}sqrt(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})} - \frac{3}{2(x + 1)(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}sqrt(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})} - \frac{3}{2(x + 1)^{2}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}sqrt(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!