本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(8 - 4x)}{(4x - {x}^{2})} + ln(\frac{x}{(4 - x)}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - \frac{4x}{(4x - x^{2})} + \frac{8}{(4x - x^{2})} + ln(\frac{x}{(-x + 4)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - \frac{4x}{(4x - x^{2})} + \frac{8}{(4x - x^{2})} + ln(\frac{x}{(-x + 4)})\right)}{dx}\\=& - 4(\frac{-(4 - 2x)}{(4x - x^{2})^{2}})x - \frac{4}{(4x - x^{2})} + 8(\frac{-(4 - 2x)}{(4x - x^{2})^{2}}) + \frac{((\frac{-(-1 + 0)}{(-x + 4)^{2}})x + \frac{1}{(-x + 4)})}{(\frac{x}{(-x + 4)})}\\=&\frac{-8x^{2}}{(4x - x^{2})^{2}} + \frac{32x}{(4x - x^{2})^{2}} - \frac{4}{(4x - x^{2})} - \frac{32}{(4x - x^{2})^{2}} + \frac{1}{(-x + 4)} + \frac{1}{x}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!