本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(sqrt({a}^{2} - {x}^{2}))}{30} + \frac{(b - x)}{60} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{30}sqrt(a^{2} - x^{2}) + \frac{1}{60}b - \frac{1}{60}x\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{30}sqrt(a^{2} - x^{2}) + \frac{1}{60}b - \frac{1}{60}x\right)}{dx}\\=&\frac{\frac{1}{30}(0 - 2x)*\frac{1}{2}}{(a^{2} - x^{2})^{\frac{1}{2}}} + 0 - \frac{1}{60}\\=& - \frac{x}{30(a^{2} - x^{2})^{\frac{1}{2}}} - \frac{1}{60}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( - \frac{x}{30(a^{2} - x^{2})^{\frac{1}{2}}} - \frac{1}{60}\right)}{dx}\\=& - \frac{(\frac{\frac{-1}{2}(0 - 2x)}{(a^{2} - x^{2})^{\frac{3}{2}}})x}{30} - \frac{1}{30(a^{2} - x^{2})^{\frac{1}{2}}} + 0\\=& - \frac{x^{2}}{30(a^{2} - x^{2})^{\frac{3}{2}}} - \frac{1}{30(a^{2} - x^{2})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!