本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(\frac{30({x}^{2} - 2{x}^{3} + {x}^{4})}{(1.9sin(x*3.14))}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{15.7894736842105x^{2}}{sin(3.14x)} - \frac{31.5789473684211x^{3}}{sin(3.14x)} + \frac{15.7894736842105x^{4}}{sin(3.14x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{15.7894736842105x^{2}}{sin(3.14x)} - \frac{31.5789473684211x^{3}}{sin(3.14x)} + \frac{15.7894736842105x^{4}}{sin(3.14x)}\right)}{dx}\\=&\frac{15.7894736842105*2x}{sin(3.14x)} + \frac{15.7894736842105x^{2}*-cos(3.14x)*3.14}{sin^{2}(3.14x)} - \frac{31.5789473684211*3x^{2}}{sin(3.14x)} - \frac{31.5789473684211x^{3}*-cos(3.14x)*3.14}{sin^{2}(3.14x)} + \frac{15.7894736842105*4x^{3}}{sin(3.14x)} + \frac{15.7894736842105x^{4}*-cos(3.14x)*3.14}{sin^{2}(3.14x)}\\=&\frac{-49.578947368421x^{2}cos(3.14x)}{sin^{2}(3.14x)} + \frac{99.1578947368421x^{3}cos(3.14x)}{sin^{2}(3.14x)} - \frac{49.5789473684211x^{4}cos(3.14x)}{sin^{2}(3.14x)} + \frac{31.5789473684211x}{sin(3.14x)} + \frac{63.1578947368421x^{3}}{sin(3.14x)} - \frac{94.7368421052632x^{2}}{sin(3.14x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!