本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(({(x - 2)}^{3})sqrt(x - 5))}{sqrt(x + 1)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x^{3}sqrt(x - 5)}{sqrt(x + 1)} - \frac{6x^{2}sqrt(x - 5)}{sqrt(x + 1)} + \frac{12xsqrt(x - 5)}{sqrt(x + 1)} - \frac{8sqrt(x - 5)}{sqrt(x + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x^{3}sqrt(x - 5)}{sqrt(x + 1)} - \frac{6x^{2}sqrt(x - 5)}{sqrt(x + 1)} + \frac{12xsqrt(x - 5)}{sqrt(x + 1)} - \frac{8sqrt(x - 5)}{sqrt(x + 1)}\right)}{dx}\\=&\frac{3x^{2}sqrt(x - 5)}{sqrt(x + 1)} + \frac{x^{3}(1 + 0)*\frac{1}{2}}{(x - 5)^{\frac{1}{2}}sqrt(x + 1)} + \frac{x^{3}sqrt(x - 5)*-(1 + 0)*\frac{1}{2}}{(x + 1)(x + 1)^{\frac{1}{2}}} - \frac{6*2xsqrt(x - 5)}{sqrt(x + 1)} - \frac{6x^{2}(1 + 0)*\frac{1}{2}}{(x - 5)^{\frac{1}{2}}sqrt(x + 1)} - \frac{6x^{2}sqrt(x - 5)*-(1 + 0)*\frac{1}{2}}{(x + 1)(x + 1)^{\frac{1}{2}}} + \frac{12sqrt(x - 5)}{sqrt(x + 1)} + \frac{12x(1 + 0)*\frac{1}{2}}{(x - 5)^{\frac{1}{2}}sqrt(x + 1)} + \frac{12xsqrt(x - 5)*-(1 + 0)*\frac{1}{2}}{(x + 1)(x + 1)^{\frac{1}{2}}} - \frac{8(1 + 0)*\frac{1}{2}}{(x - 5)^{\frac{1}{2}}sqrt(x + 1)} - \frac{8sqrt(x - 5)*-(1 + 0)*\frac{1}{2}}{(x + 1)(x + 1)^{\frac{1}{2}}}\\=&\frac{3x^{2}sqrt(x - 5)}{sqrt(x + 1)} + \frac{x^{3}}{2(x - 5)^{\frac{1}{2}}sqrt(x + 1)} - \frac{x^{3}sqrt(x - 5)}{2(x + 1)^{\frac{3}{2}}} - \frac{12xsqrt(x - 5)}{sqrt(x + 1)} - \frac{3x^{2}}{(x - 5)^{\frac{1}{2}}sqrt(x + 1)} + \frac{3x^{2}sqrt(x - 5)}{(x + 1)^{\frac{3}{2}}} + \frac{12sqrt(x - 5)}{sqrt(x + 1)} + \frac{6x}{(x - 5)^{\frac{1}{2}}sqrt(x + 1)} - \frac{6xsqrt(x - 5)}{(x + 1)^{\frac{3}{2}}} - \frac{4}{(x - 5)^{\frac{1}{2}}sqrt(x + 1)} + \frac{4sqrt(x - 5)}{(x + 1)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!