本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数arccos({(\frac{(1 - x)}{(1 + x)})}^{\frac{1}{2}}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = arccos((\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arccos((\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}})\right)}{dx}\\=&(\frac{-((\frac{\frac{1}{2}(-(\frac{-(1 + 0)}{(x + 1)^{2}})x - \frac{1}{(x + 1)} + (\frac{-(1 + 0)}{(x + 1)^{2}}))}{(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}}))}{((1 - ((\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}})^{2})^{\frac{1}{2}})})\\=&\frac{-x}{2(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}(\frac{x}{(x + 1)} - \frac{1}{(x + 1)} + 1)^{\frac{1}{2}}(x + 1)^{2}} + \frac{1}{2(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}(\frac{x}{(x + 1)} - \frac{1}{(x + 1)} + 1)^{\frac{1}{2}}(x + 1)^{2}} + \frac{1}{2(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}(\frac{x}{(x + 1)} - \frac{1}{(x + 1)} + 1)^{\frac{1}{2}}(x + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!