本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(2{x}^{3} + sqrt(x) + 4arctan(x))}{x} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{sqrt(x)}{x} + \frac{4arctan(x)}{x} + 2x^{2}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{sqrt(x)}{x} + \frac{4arctan(x)}{x} + 2x^{2}\right)}{dx}\\=&\frac{-sqrt(x)}{x^{2}} + \frac{\frac{1}{2}}{x(x)^{\frac{1}{2}}} + \frac{4*-arctan(x)}{x^{2}} + \frac{4(\frac{(1)}{(1 + (x)^{2})})}{x} + 2*2x\\=& - \frac{sqrt(x)}{x^{2}} + \frac{1}{2x^{\frac{3}{2}}} - \frac{4arctan(x)}{x^{2}} + \frac{4}{(x^{2} + 1)x} + 4x\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( - \frac{sqrt(x)}{x^{2}} + \frac{1}{2x^{\frac{3}{2}}} - \frac{4arctan(x)}{x^{2}} + \frac{4}{(x^{2} + 1)x} + 4x\right)}{dx}\\=& - \frac{-2sqrt(x)}{x^{3}} - \frac{\frac{1}{2}}{x^{2}(x)^{\frac{1}{2}}} + \frac{\frac{-3}{2}}{2x^{\frac{5}{2}}} - \frac{4*-2arctan(x)}{x^{3}} - \frac{4(\frac{(1)}{(1 + (x)^{2})})}{x^{2}} + \frac{4(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})}{x} + \frac{4*-1}{(x^{2} + 1)x^{2}} + 4\\=&\frac{2sqrt(x)}{x^{3}} + \frac{8arctan(x)}{x^{3}} - \frac{5}{4x^{\frac{5}{2}}} - \frac{8}{(x^{2} + 1)x^{2}} - \frac{8}{(x^{2} + 1)^{2}} + 4\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!