本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数arctan((\frac{4sin(x)}{(3 + 5cos(x))})) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = arctan(\frac{4sin(x)}{(5cos(x) + 3)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arctan(\frac{4sin(x)}{(5cos(x) + 3)})\right)}{dx}\\=&(\frac{(4(\frac{-(5*-sin(x) + 0)}{(5cos(x) + 3)^{2}})sin(x) + \frac{4cos(x)}{(5cos(x) + 3)})}{(1 + (\frac{4sin(x)}{(5cos(x) + 3)})^{2})})\\=&\frac{20sin^{2}(x)}{(5cos(x) + 3)^{2}(\frac{16sin^{2}(x)}{(5cos(x) + 3)^{2}} + 1)} + \frac{4cos(x)}{(5cos(x) + 3)(\frac{16sin^{2}(x)}{(5cos(x) + 3)^{2}} + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!