本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt(2aktN)sqrt(\frac{qx}{(kt)} + {n}^{2}{\frac{1}{N}}^{2}e^{\frac{qx}{(kt)}}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sqrt(2aktN)sqrt(\frac{qx}{kt} + \frac{n^{2}e^{\frac{qx}{kt}}}{N^{2}})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt(2aktN)sqrt(\frac{qx}{kt} + \frac{n^{2}e^{\frac{qx}{kt}}}{N^{2}})\right)}{dx}\\=&\frac{0*\frac{1}{2}sqrt(\frac{qx}{kt} + \frac{n^{2}e^{\frac{qx}{kt}}}{N^{2}})}{(2aktN)^{\frac{1}{2}}} + \frac{sqrt(2aktN)(\frac{q}{kt} + \frac{n^{2}e^{\frac{qx}{kt}}q}{N^{2}kt})*\frac{1}{2}}{(\frac{qx}{kt} + \frac{n^{2}e^{\frac{qx}{kt}}}{N^{2}})^{\frac{1}{2}}}\\=&\frac{qsqrt(2aktN)}{2(\frac{qx}{kt} + \frac{n^{2}e^{\frac{qx}{kt}}}{N^{2}})^{\frac{1}{2}}kt} + \frac{qn^{2}e^{\frac{qx}{kt}}sqrt(2aktN)}{2(\frac{qx}{kt} + \frac{n^{2}e^{\frac{qx}{kt}}}{N^{2}})^{\frac{1}{2}}ktN^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!