本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{({(1 + xsin(x))}^{\frac{1}{2}} - cos(x))}{arcsin({x}^{2})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{(xsin(x) + 1)^{\frac{1}{2}}}{arcsin(x^{2})} - \frac{cos(x)}{arcsin(x^{2})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{(xsin(x) + 1)^{\frac{1}{2}}}{arcsin(x^{2})} - \frac{cos(x)}{arcsin(x^{2})}\right)}{dx}\\=&\frac{(\frac{\frac{1}{2}(sin(x) + xcos(x) + 0)}{(xsin(x) + 1)^{\frac{1}{2}}})}{arcsin(x^{2})} + (xsin(x) + 1)^{\frac{1}{2}}(\frac{-(2x)}{arcsin^{2}(x^{2})((1 - (x^{2})^{2})^{\frac{1}{2}})}) - \frac{-sin(x)}{arcsin(x^{2})} - cos(x)(\frac{-(2x)}{arcsin^{2}(x^{2})((1 - (x^{2})^{2})^{\frac{1}{2}})})\\=&\frac{sin(x)}{2(xsin(x) + 1)^{\frac{1}{2}}arcsin(x^{2})} + \frac{xcos(x)}{2(xsin(x) + 1)^{\frac{1}{2}}arcsin(x^{2})} - \frac{2(xsin(x) + 1)^{\frac{1}{2}}x}{(-x^{4} + 1)^{\frac{1}{2}}arcsin^{2}(x^{2})} + \frac{sin(x)}{arcsin(x^{2})} + \frac{2xcos(x)}{(-x^{4} + 1)^{\frac{1}{2}}arcsin^{2}(x^{2})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!