本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数({(1 + xsin(x))}^{\frac{1}{2}} - cos(x)){\frac{1}{arcsin(x)}}^{2} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{(xsin(x) + 1)^{\frac{1}{2}}}{arcsin^{2}(x)} - \frac{cos(x)}{arcsin^{2}(x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{(xsin(x) + 1)^{\frac{1}{2}}}{arcsin^{2}(x)} - \frac{cos(x)}{arcsin^{2}(x)}\right)}{dx}\\=&\frac{(\frac{\frac{1}{2}(sin(x) + xcos(x) + 0)}{(xsin(x) + 1)^{\frac{1}{2}}})}{arcsin^{2}(x)} + (xsin(x) + 1)^{\frac{1}{2}}(\frac{-2(1)}{arcsin^{3}(x)((1 - (x)^{2})^{\frac{1}{2}})}) - \frac{-sin(x)}{arcsin^{2}(x)} - cos(x)(\frac{-2(1)}{arcsin^{3}(x)((1 - (x)^{2})^{\frac{1}{2}})})\\=&\frac{sin(x)}{2(xsin(x) + 1)^{\frac{1}{2}}arcsin^{2}(x)} + \frac{xcos(x)}{2(xsin(x) + 1)^{\frac{1}{2}}arcsin^{2}(x)} - \frac{2(xsin(x) + 1)^{\frac{1}{2}}}{(-x^{2} + 1)^{\frac{1}{2}}arcsin^{3}(x)} + \frac{sin(x)}{arcsin^{2}(x)} + \frac{2cos(x)}{(-x^{2} + 1)^{\frac{1}{2}}arcsin^{3}(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!