本次共计算 1 个题目:每一题对 x 求 3 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(\frac{({e}^{(\frac{x}{2})})x}{cos(2)}) 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x{e}^{(\frac{1}{2}x)}}{cos(2)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x{e}^{(\frac{1}{2}x)}}{cos(2)}\right)}{dx}\\=&\frac{{e}^{(\frac{1}{2}x)}}{cos(2)} + \frac{x({e}^{(\frac{1}{2}x)}((\frac{1}{2})ln(e) + \frac{(\frac{1}{2}x)(0)}{(e)}))}{cos(2)} + \frac{x{e}^{(\frac{1}{2}x)}sin(2)*0}{cos^{2}(2)}\\=&\frac{{e}^{(\frac{1}{2}x)}}{cos(2)} + \frac{x{e}^{(\frac{1}{2}x)}}{2cos(2)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{{e}^{(\frac{1}{2}x)}}{cos(2)} + \frac{x{e}^{(\frac{1}{2}x)}}{2cos(2)}\right)}{dx}\\=&\frac{({e}^{(\frac{1}{2}x)}((\frac{1}{2})ln(e) + \frac{(\frac{1}{2}x)(0)}{(e)}))}{cos(2)} + \frac{{e}^{(\frac{1}{2}x)}sin(2)*0}{cos^{2}(2)} + \frac{{e}^{(\frac{1}{2}x)}}{2cos(2)} + \frac{x({e}^{(\frac{1}{2}x)}((\frac{1}{2})ln(e) + \frac{(\frac{1}{2}x)(0)}{(e)}))}{2cos(2)} + \frac{x{e}^{(\frac{1}{2}x)}sin(2)*0}{2cos^{2}(2)}\\=&\frac{{e}^{(\frac{1}{2}x)}}{cos(2)} + \frac{x{e}^{(\frac{1}{2}x)}}{4cos(2)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{{e}^{(\frac{1}{2}x)}}{cos(2)} + \frac{x{e}^{(\frac{1}{2}x)}}{4cos(2)}\right)}{dx}\\=&\frac{({e}^{(\frac{1}{2}x)}((\frac{1}{2})ln(e) + \frac{(\frac{1}{2}x)(0)}{(e)}))}{cos(2)} + \frac{{e}^{(\frac{1}{2}x)}sin(2)*0}{cos^{2}(2)} + \frac{{e}^{(\frac{1}{2}x)}}{4cos(2)} + \frac{x({e}^{(\frac{1}{2}x)}((\frac{1}{2})ln(e) + \frac{(\frac{1}{2}x)(0)}{(e)}))}{4cos(2)} + \frac{x{e}^{(\frac{1}{2}x)}sin(2)*0}{4cos^{2}(2)}\\=&\frac{3{e}^{(\frac{1}{2}x)}}{4cos(2)} + \frac{x{e}^{(\frac{1}{2}x)}}{8cos(2)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!