本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt(1 - {x}^{2})arcsin(x) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = arcsin(x)sqrt(-x^{2} + 1)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arcsin(x)sqrt(-x^{2} + 1)\right)}{dx}\\=&(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})})sqrt(-x^{2} + 1) + \frac{arcsin(x)(-2x + 0)*\frac{1}{2}}{(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{sqrt(-x^{2} + 1)}{(-x^{2} + 1)^{\frac{1}{2}}} - \frac{xarcsin(x)}{(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{sqrt(-x^{2} + 1)}{(-x^{2} + 1)^{\frac{1}{2}}} - \frac{xarcsin(x)}{(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})sqrt(-x^{2} + 1) + \frac{(-2x + 0)*\frac{1}{2}}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}} - (\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})xarcsin(x) - \frac{arcsin(x)}{(-x^{2} + 1)^{\frac{1}{2}}} - \frac{x(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{xsqrt(-x^{2} + 1)}{(-x^{2} + 1)^{\frac{3}{2}}} - \frac{x^{2}arcsin(x)}{(-x^{2} + 1)^{\frac{3}{2}}} - \frac{x}{(-x^{2} + 1)} - \frac{arcsin(x)}{(-x^{2} + 1)^{\frac{1}{2}}} - \frac{x}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!