本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(sin({e}^{x})) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(sin({e}^{x}))\right)}{dx}\\=&\frac{cos({e}^{x})({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(sin({e}^{x}))}\\=&\frac{{e}^{x}cos({e}^{x})}{sin({e}^{x})}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{{e}^{x}cos({e}^{x})}{sin({e}^{x})}\right)}{dx}\\=&\frac{({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))cos({e}^{x})}{sin({e}^{x})} + \frac{{e}^{x}*-cos({e}^{x})({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))cos({e}^{x})}{sin^{2}({e}^{x})} + \frac{{e}^{x}*-sin({e}^{x})({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{sin({e}^{x})}\\=&\frac{{e}^{x}cos({e}^{x})}{sin({e}^{x})} - \frac{{e}^{(2x)}cos^{2}({e}^{x})}{sin^{2}({e}^{x})} - {e}^{(2x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!