本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数x(\frac{ln(x + 1)}{(x - 1)}) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{xln(x + 1)}{(x - 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{xln(x + 1)}{(x - 1)}\right)}{dx}\\=&(\frac{-(1 + 0)}{(x - 1)^{2}})xln(x + 1) + \frac{ln(x + 1)}{(x - 1)} + \frac{x(1 + 0)}{(x - 1)(x + 1)}\\=&\frac{-xln(x + 1)}{(x - 1)^{2}} + \frac{ln(x + 1)}{(x - 1)} + \frac{x}{(x + 1)(x - 1)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-xln(x + 1)}{(x - 1)^{2}} + \frac{ln(x + 1)}{(x - 1)} + \frac{x}{(x + 1)(x - 1)}\right)}{dx}\\=&-(\frac{-2(1 + 0)}{(x - 1)^{3}})xln(x + 1) - \frac{ln(x + 1)}{(x - 1)^{2}} - \frac{x(1 + 0)}{(x - 1)^{2}(x + 1)} + (\frac{-(1 + 0)}{(x - 1)^{2}})ln(x + 1) + \frac{(1 + 0)}{(x - 1)(x + 1)} + \frac{(\frac{-(1 + 0)}{(x + 1)^{2}})x}{(x - 1)} + \frac{(\frac{-(1 + 0)}{(x - 1)^{2}})x}{(x + 1)} + \frac{1}{(x + 1)(x - 1)}\\=&\frac{2xln(x + 1)}{(x - 1)^{3}} - \frac{2ln(x + 1)}{(x - 1)^{2}} - \frac{x}{(x + 1)(x - 1)^{2}} - \frac{x}{(x + 1)^{2}(x - 1)} - \frac{x}{(x - 1)^{2}(x + 1)} + \frac{2}{(x + 1)(x - 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!