本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt(\frac{(3x - 2)(x - 1)}{(5 - 2x)}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sqrt(\frac{3x^{2}}{(-2x + 5)} - \frac{5x}{(-2x + 5)} + \frac{2}{(-2x + 5)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt(\frac{3x^{2}}{(-2x + 5)} - \frac{5x}{(-2x + 5)} + \frac{2}{(-2x + 5)})\right)}{dx}\\=&\frac{(3(\frac{-(-2 + 0)}{(-2x + 5)^{2}})x^{2} + \frac{3*2x}{(-2x + 5)} - 5(\frac{-(-2 + 0)}{(-2x + 5)^{2}})x - \frac{5}{(-2x + 5)} + 2(\frac{-(-2 + 0)}{(-2x + 5)^{2}}))*\frac{1}{2}}{(\frac{3x^{2}}{(-2x + 5)} - \frac{5x}{(-2x + 5)} + \frac{2}{(-2x + 5)})^{\frac{1}{2}}}\\=&\frac{3x^{2}}{(-2x + 5)^{2}(\frac{3x^{2}}{(-2x + 5)} - \frac{5x}{(-2x + 5)} + \frac{2}{(-2x + 5)})^{\frac{1}{2}}} + \frac{3x}{(-2x + 5)(\frac{3x^{2}}{(-2x + 5)} - \frac{5x}{(-2x + 5)} + \frac{2}{(-2x + 5)})^{\frac{1}{2}}} - \frac{5x}{(-2x + 5)^{2}(\frac{3x^{2}}{(-2x + 5)} - \frac{5x}{(-2x + 5)} + \frac{2}{(-2x + 5)})^{\frac{1}{2}}} + \frac{2}{(-2x + 5)^{2}(\frac{3x^{2}}{(-2x + 5)} - \frac{5x}{(-2x + 5)} + \frac{2}{(-2x + 5)})^{\frac{1}{2}}} - \frac{5}{2(-2x + 5)(\frac{3x^{2}}{(-2x + 5)} - \frac{5x}{(-2x + 5)} + \frac{2}{(-2x + 5)})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!