本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数8sqrt(-{x}^{2} + 1){\frac{1}{(2x + 1)}}^{3} - \frac{{x}^{2}{\frac{1}{(-{x}^{2} + 1)}}^{(\frac{3}{2})}}{(2x + 1)} + \frac{4x}{(({(2x + 1)}^{2})sqrt(-{x}^{2} + 1))} - \frac{1}{(2x + 1)sqrt(-{x}^{2} + 1)} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{8sqrt(-x^{2} + 1)}{(2x + 1)^{3}} - \frac{x^{2}}{(2x + 1)(-x^{2} + 1)^{\frac{3}{2}}} + \frac{4x}{(2x + 1)^{2}sqrt(-x^{2} + 1)} - \frac{1}{(2x + 1)sqrt(-x^{2} + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{8sqrt(-x^{2} + 1)}{(2x + 1)^{3}} - \frac{x^{2}}{(2x + 1)(-x^{2} + 1)^{\frac{3}{2}}} + \frac{4x}{(2x + 1)^{2}sqrt(-x^{2} + 1)} - \frac{1}{(2x + 1)sqrt(-x^{2} + 1)}\right)}{dx}\\=&8(\frac{-3(2 + 0)}{(2x + 1)^{4}})sqrt(-x^{2} + 1) + \frac{8(-2x + 0)*\frac{1}{2}}{(2x + 1)^{3}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{(\frac{-(2 + 0)}{(2x + 1)^{2}})x^{2}}{(-x^{2} + 1)^{\frac{3}{2}}} - \frac{(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})x^{2}}{(2x + 1)} - \frac{2x}{(2x + 1)(-x^{2} + 1)^{\frac{3}{2}}} + \frac{4(\frac{-2(2 + 0)}{(2x + 1)^{3}})x}{sqrt(-x^{2} + 1)} + \frac{4}{(2x + 1)^{2}sqrt(-x^{2} + 1)} + \frac{4x*-(-2x + 0)*\frac{1}{2}}{(2x + 1)^{2}(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}} - \frac{(\frac{-(2 + 0)}{(2x + 1)^{2}})}{sqrt(-x^{2} + 1)} - \frac{-(-2x + 0)*\frac{1}{2}}{(2x + 1)(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{-48sqrt(-x^{2} + 1)}{(2x + 1)^{4}} - \frac{3x^{3}}{(2x + 1)(-x^{2} + 1)^{\frac{5}{2}}} - \frac{16x}{(2x + 1)^{3}sqrt(-x^{2} + 1)} - \frac{8x}{(2x + 1)^{3}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{3x}{(-x^{2} + 1)^{\frac{3}{2}}(2x + 1)} + \frac{2x^{2}}{(2x + 1)^{2}(-x^{2} + 1)^{\frac{3}{2}}} + \frac{6}{(2x + 1)^{2}sqrt(-x^{2} + 1)} + \frac{4x^{2}}{(-x^{2} + 1)^{\frac{3}{2}}(2x + 1)^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-48sqrt(-x^{2} + 1)}{(2x + 1)^{4}} - \frac{3x^{3}}{(2x + 1)(-x^{2} + 1)^{\frac{5}{2}}} - \frac{16x}{(2x + 1)^{3}sqrt(-x^{2} + 1)} - \frac{8x}{(2x + 1)^{3}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{3x}{(-x^{2} + 1)^{\frac{3}{2}}(2x + 1)} + \frac{2x^{2}}{(2x + 1)^{2}(-x^{2} + 1)^{\frac{3}{2}}} + \frac{6}{(2x + 1)^{2}sqrt(-x^{2} + 1)} + \frac{4x^{2}}{(-x^{2} + 1)^{\frac{3}{2}}(2x + 1)^{2}}\right)}{dx}\\=&-48(\frac{-4(2 + 0)}{(2x + 1)^{5}})sqrt(-x^{2} + 1) - \frac{48(-2x + 0)*\frac{1}{2}}{(2x + 1)^{4}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{3(\frac{-(2 + 0)}{(2x + 1)^{2}})x^{3}}{(-x^{2} + 1)^{\frac{5}{2}}} - \frac{3(\frac{\frac{-5}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{7}{2}}})x^{3}}{(2x + 1)} - \frac{3*3x^{2}}{(2x + 1)(-x^{2} + 1)^{\frac{5}{2}}} - \frac{16(\frac{-3(2 + 0)}{(2x + 1)^{4}})x}{sqrt(-x^{2} + 1)} - \frac{16}{(2x + 1)^{3}sqrt(-x^{2} + 1)} - \frac{16x*-(-2x + 0)*\frac{1}{2}}{(2x + 1)^{3}(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}} - \frac{8(\frac{-3(2 + 0)}{(2x + 1)^{4}})x}{(-x^{2} + 1)^{\frac{1}{2}}} - \frac{8(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})x}{(2x + 1)^{3}} - \frac{8}{(2x + 1)^{3}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{3(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})x}{(2x + 1)} - \frac{3(\frac{-(2 + 0)}{(2x + 1)^{2}})x}{(-x^{2} + 1)^{\frac{3}{2}}} - \frac{3}{(-x^{2} + 1)^{\frac{3}{2}}(2x + 1)} + \frac{2(\frac{-2(2 + 0)}{(2x + 1)^{3}})x^{2}}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{2(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})x^{2}}{(2x + 1)^{2}} + \frac{2*2x}{(2x + 1)^{2}(-x^{2} + 1)^{\frac{3}{2}}} + \frac{6(\frac{-2(2 + 0)}{(2x + 1)^{3}})}{sqrt(-x^{2} + 1)} + \frac{6*-(-2x + 0)*\frac{1}{2}}{(2x + 1)^{2}(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}} + \frac{4(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})x^{2}}{(2x + 1)^{2}} + \frac{4(\frac{-2(2 + 0)}{(2x + 1)^{3}})x^{2}}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{4*2x}{(-x^{2} + 1)^{\frac{3}{2}}(2x + 1)^{2}}\\=&\frac{384sqrt(-x^{2} + 1)}{(2x + 1)^{5}} - \frac{15x^{4}}{(2x + 1)(-x^{2} + 1)^{\frac{7}{2}}} + \frac{12x^{3}}{(2x + 1)^{2}(-x^{2} + 1)^{\frac{5}{2}}} + \frac{96x}{(2x + 1)^{4}sqrt(-x^{2} + 1)} - \frac{18x^{2}}{(-x^{2} + 1)^{\frac{5}{2}}(2x + 1)} - \frac{32x^{2}}{(2x + 1)^{3}(-x^{2} + 1)^{\frac{3}{2}}} - \frac{40}{(2x + 1)^{3}sqrt(-x^{2} + 1)} - \frac{16x^{2}}{(-x^{2} + 1)^{\frac{3}{2}}(2x + 1)^{3}} + \frac{96x}{(2x + 1)^{4}(-x^{2} + 1)^{\frac{1}{2}}} + \frac{14x}{(2x + 1)^{2}(-x^{2} + 1)^{\frac{3}{2}}} + \frac{12x^{3}}{(-x^{2} + 1)^{\frac{5}{2}}(2x + 1)^{2}} + \frac{10x}{(-x^{2} + 1)^{\frac{3}{2}}(2x + 1)^{2}} - \frac{8}{(2x + 1)^{3}(-x^{2} + 1)^{\frac{1}{2}}} - \frac{3}{(-x^{2} + 1)^{\frac{3}{2}}(2x + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!