本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(\frac{sqrt(x + 1)({x}^{2} + 3)}{(x + 2)}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(\frac{x^{2}sqrt(x + 1)}{(x + 2)} + \frac{3sqrt(x + 1)}{(x + 2)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(\frac{x^{2}sqrt(x + 1)}{(x + 2)} + \frac{3sqrt(x + 1)}{(x + 2)})\right)}{dx}\\=&\frac{((\frac{-(1 + 0)}{(x + 2)^{2}})x^{2}sqrt(x + 1) + \frac{2xsqrt(x + 1)}{(x + 2)} + \frac{x^{2}(1 + 0)*\frac{1}{2}}{(x + 2)(x + 1)^{\frac{1}{2}}} + 3(\frac{-(1 + 0)}{(x + 2)^{2}})sqrt(x + 1) + \frac{3(1 + 0)*\frac{1}{2}}{(x + 2)(x + 1)^{\frac{1}{2}}})}{(\frac{x^{2}sqrt(x + 1)}{(x + 2)} + \frac{3sqrt(x + 1)}{(x + 2)})}\\=&\frac{-x^{2}sqrt(x + 1)}{(x + 2)^{2}(\frac{x^{2}sqrt(x + 1)}{(x + 2)} + \frac{3sqrt(x + 1)}{(x + 2)})} + \frac{2xsqrt(x + 1)}{(x + 2)(\frac{x^{2}sqrt(x + 1)}{(x + 2)} + \frac{3sqrt(x + 1)}{(x + 2)})} + \frac{x^{2}}{2(\frac{x^{2}sqrt(x + 1)}{(x + 2)} + \frac{3sqrt(x + 1)}{(x + 2)})(x + 2)(x + 1)^{\frac{1}{2}}} - \frac{3sqrt(x + 1)}{(x + 2)^{2}(\frac{x^{2}sqrt(x + 1)}{(x + 2)} + \frac{3sqrt(x + 1)}{(x + 2)})} + \frac{3}{2(\frac{x^{2}sqrt(x + 1)}{(x + 2)} + \frac{3sqrt(x + 1)}{(x + 2)})(x + 2)(x + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!