本次共计算 1 个题目:每一题对 x 求 15 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(1 - cos(x))}{sqrt(x)} 关于 x 的 15 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ \\ &\color{blue}{函数的 15 阶导数:} \\=&\frac{6190283353629375cos(x)}{32768x^{\frac{31}{2}}} + \frac{950070886467877sin(x)}{16384x^{\frac{29}{2}}} - \frac{830114625965625cos(x)}{8192x^{\frac{27}{2}}} - \frac{143886535167375sin(x)}{4096x^{\frac{25}{2}}} + \frac{18767808934875cos(x)}{2048x^{\frac{23}{2}}} + \frac{1966151412225sin(x)}{1024x^{\frac{21}{2}}} - \frac{172469422125cos(x)}{512x^{\frac{19}{2}}} - \frac{13043905875sin(x)}{256x^{\frac{17}{2}}} + \frac{869593725cos(x)}{128x^{\frac{15}{2}}} + \frac{52026975sin(x)}{64x^{\frac{13}{2}}} - \frac{2837835cos(x)}{32x^{\frac{11}{2}}} - \frac{143325sin(x)}{16x^{\frac{9}{2}}} + \frac{6825cos(x)}{8x^{\frac{7}{2}}} + \frac{315sin(x)}{4x^{\frac{5}{2}}} - \frac{15cos(x)}{2x^{\frac{3}{2}}} - \frac{sin(x)}{sqrt(x)} - \frac{6190283353629375}{32768x^{\frac{31}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!