本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数-4*3.14*0.0000001(2230(1.61sin(100*3.14x) + 0.129sin(100*3.14x)) + \frac{1.4*2arctan(\frac{6(1.61sin(100*3.1415x) + 0.129sin(100*3.1415x))}{5})*1000000}{3.14})*189*9*0.0001 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( -0.0007670517977sin(314x) - 0.000061459429752sin(314x) - 0.190512arctan(1.932sin(314.15x) + 0.1548sin(314.15x))\right)}{dx}\\=&-0.0007670517977cos(314x)*314 - 0.000061459429752cos(314x)*314 - 0.190512(\frac{(1.932cos(314.15x)*314.15 + 0.1548cos(314.15x)*314.15)}{(1 + (1.932sin(314.15x) + 0.1548sin(314.15x))^{2})})\\=&-0.2408542644715cos(314x) - 0.019298260942128cos(314x) - \frac{115.6289341536cos(314.15x)}{(3.732624sin(314.15x)sin(314.15x) + 0.2990736sin(314.15x)sin(314.15x) + 0.2990736sin(314.15x)sin(314.15x) + 0.02396304sin(314.15x)sin(314.15x) + 1)} - \frac{9.26467857504cos(314.15x)}{(3.732624sin(314.15x)sin(314.15x) + 0.2990736sin(314.15x)sin(314.15x) + 0.2990736sin(314.15x)sin(314.15x) + 0.02396304sin(314.15x)sin(314.15x) + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!