本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{((-3xx + 12x)(12x - 8) - 12(6xx - xxx))(6xx - xxx)}{(6xx - xxx)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-240x^{5}}{(-x^{3} + 6x^{2})} + \frac{24x^{6}}{(-x^{3} + 6x^{2})} + \frac{672x^{4}}{(-x^{3} + 6x^{2})} - \frac{576x^{3}}{(-x^{3} + 6x^{2})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-240x^{5}}{(-x^{3} + 6x^{2})} + \frac{24x^{6}}{(-x^{3} + 6x^{2})} + \frac{672x^{4}}{(-x^{3} + 6x^{2})} - \frac{576x^{3}}{(-x^{3} + 6x^{2})}\right)}{dx}\\=&-240(\frac{-(-3x^{2} + 6*2x)}{(-x^{3} + 6x^{2})^{2}})x^{5} - \frac{240*5x^{4}}{(-x^{3} + 6x^{2})} + 24(\frac{-(-3x^{2} + 6*2x)}{(-x^{3} + 6x^{2})^{2}})x^{6} + \frac{24*6x^{5}}{(-x^{3} + 6x^{2})} + 672(\frac{-(-3x^{2} + 6*2x)}{(-x^{3} + 6x^{2})^{2}})x^{4} + \frac{672*4x^{3}}{(-x^{3} + 6x^{2})} - 576(\frac{-(-3x^{2} + 6*2x)}{(-x^{3} + 6x^{2})^{2}})x^{3} - \frac{576*3x^{2}}{(-x^{3} + 6x^{2})}\\=&\frac{-1008x^{7}}{(-x^{3} + 6x^{2})^{2}} + \frac{4896x^{6}}{(-x^{3} + 6x^{2})^{2}} - \frac{1200x^{4}}{(-x^{3} + 6x^{2})} + \frac{72x^{8}}{(-x^{3} + 6x^{2})^{2}} + \frac{144x^{5}}{(-x^{3} + 6x^{2})} - \frac{9792x^{5}}{(-x^{3} + 6x^{2})^{2}} + \frac{2688x^{3}}{(-x^{3} + 6x^{2})} + \frac{6912x^{4}}{(-x^{3} + 6x^{2})^{2}} - \frac{1728x^{2}}{(-x^{3} + 6x^{2})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!