数学
         
语言:中文    Language:English
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案

    本次共计算 1 个题目:每一题对 x 求 3 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数log_{{x}^{x}}^{x} 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( log_{{x}^{x}}^{x}\right)}{dx}\\=&(\frac{(\frac{(1)}{(x)} - \frac{(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))log_{{x}^{x}}^{x}}{({x}^{x})})}{(ln({x}^{x}))})\\=&\frac{1}{xln({x}^{x})} - \frac{log_{{x}^{x}}^{x}ln(x)}{ln({x}^{x})} - \frac{log_{{x}^{x}}^{x}}{ln({x}^{x})}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{1}{xln({x}^{x})} - \frac{log_{{x}^{x}}^{x}ln(x)}{ln({x}^{x})} - \frac{log_{{x}^{x}}^{x}}{ln({x}^{x})}\right)}{dx}\\=&\frac{-1}{x^{2}ln({x}^{x})} + \frac{-({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))}{xln^{2}({x}^{x})({x}^{x})} - \frac{(\frac{(\frac{(1)}{(x)} - \frac{(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))log_{{x}^{x}}^{x}}{({x}^{x})})}{(ln({x}^{x}))})ln(x)}{ln({x}^{x})} - \frac{log_{{x}^{x}}^{x}}{(x)ln({x}^{x})} - \frac{log_{{x}^{x}}^{x}ln(x)*-({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))}{ln^{2}({x}^{x})({x}^{x})} - \frac{(\frac{(\frac{(1)}{(x)} - \frac{(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))log_{{x}^{x}}^{x}}{({x}^{x})})}{(ln({x}^{x}))})}{ln({x}^{x})} - \frac{log_{{x}^{x}}^{x}*-({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))}{ln^{2}({x}^{x})({x}^{x})}\\=& - \frac{ln(x)}{xln^{2}({x}^{x})} - \frac{ln(x)}{xln^{2}({x}^{x})} - \frac{2}{xln^{2}({x}^{x})} - \frac{1}{x^{2}ln({x}^{x})} + \frac{2log_{{x}^{x}}^{x}ln^{2}(x)}{ln^{2}({x}^{x})} + \frac{2log_{{x}^{x}}^{x}ln(x)}{ln^{2}({x}^{x})} - \frac{log_{{x}^{x}}^{x}}{xln({x}^{x})} + \frac{2log_{{x}^{x}}^{x}ln(x)}{ln^{2}({x}^{x})} + \frac{2log_{{x}^{x}}^{x}}{ln^{2}({x}^{x})}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( - \frac{ln(x)}{xln^{2}({x}^{x})} - \frac{ln(x)}{xln^{2}({x}^{x})} - \frac{2}{xln^{2}({x}^{x})} - \frac{1}{x^{2}ln({x}^{x})} + \frac{2log_{{x}^{x}}^{x}ln^{2}(x)}{ln^{2}({x}^{x})} + \frac{2log_{{x}^{x}}^{x}ln(x)}{ln^{2}({x}^{x})} - \frac{log_{{x}^{x}}^{x}}{xln({x}^{x})} + \frac{2log_{{x}^{x}}^{x}ln(x)}{ln^{2}({x}^{x})} + \frac{2log_{{x}^{x}}^{x}}{ln^{2}({x}^{x})}\right)}{dx}\\=& - \frac{-ln(x)}{x^{2}ln^{2}({x}^{x})} - \frac{-2({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))ln(x)}{xln^{3}({x}^{x})({x}^{x})} - \frac{1}{xln^{2}({x}^{x})(x)} - \frac{-ln(x)}{x^{2}ln^{2}({x}^{x})} - \frac{1}{x(x)ln^{2}({x}^{x})} - \frac{ln(x)*-2({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))}{xln^{3}({x}^{x})({x}^{x})} - \frac{2*-1}{x^{2}ln^{2}({x}^{x})} - \frac{2*-2({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))}{xln^{3}({x}^{x})({x}^{x})} - \frac{-2}{x^{3}ln({x}^{x})} - \frac{-({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))}{x^{2}ln^{2}({x}^{x})({x}^{x})} + \frac{2(\frac{(\frac{(1)}{(x)} - \frac{(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))log_{{x}^{x}}^{x}}{({x}^{x})})}{(ln({x}^{x}))})ln^{2}(x)}{ln^{2}({x}^{x})} + \frac{2log_{{x}^{x}}^{x}*2ln(x)}{(x)ln^{2}({x}^{x})} + \frac{2log_{{x}^{x}}^{x}ln^{2}(x)*-2({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))}{ln^{3}({x}^{x})({x}^{x})} + \frac{2(\frac{(\frac{(1)}{(x)} - \frac{(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))log_{{x}^{x}}^{x}}{({x}^{x})})}{(ln({x}^{x}))})ln(x)}{ln^{2}({x}^{x})} + \frac{2log_{{x}^{x}}^{x}*-2({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))ln(x)}{ln^{3}({x}^{x})({x}^{x})} + \frac{2log_{{x}^{x}}^{x}}{ln^{2}({x}^{x})(x)} - \frac{-log_{{x}^{x}}^{x}}{x^{2}ln({x}^{x})} - \frac{(\frac{(\frac{(1)}{(x)} - \frac{(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))log_{{x}^{x}}^{x}}{({x}^{x})})}{(ln({x}^{x}))})}{xln({x}^{x})} - \frac{log_{{x}^{x}}^{x}*-({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))}{xln^{2}({x}^{x})({x}^{x})} + \frac{2(\frac{(\frac{(1)}{(x)} - \frac{(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))log_{{x}^{x}}^{x}}{({x}^{x})})}{(ln({x}^{x}))})ln(x)}{ln^{2}({x}^{x})} + \frac{2log_{{x}^{x}}^{x}}{(x)ln^{2}({x}^{x})} + \frac{2log_{{x}^{x}}^{x}ln(x)*-2({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))}{ln^{3}({x}^{x})({x}^{x})} + \frac{2(\frac{(\frac{(1)}{(x)} - \frac{(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))log_{{x}^{x}}^{x}}{({x}^{x})})}{(ln({x}^{x}))})}{ln^{2}({x}^{x})} + \frac{2log_{{x}^{x}}^{x}*-2({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))}{ln^{3}({x}^{x})({x}^{x})}\\=&\frac{ln(x)}{x^{2}ln^{2}({x}^{x})} + \frac{4ln^{2}(x)}{xln^{3}({x}^{x})} + \frac{8ln(x)}{xln^{3}({x}^{x})} + \frac{2ln(x)}{x^{2}ln^{2}({x}^{x})} + \frac{4ln(x)}{xln^{3}({x}^{x})} + \frac{2ln^{2}(x)}{xln^{3}({x}^{x})} + \frac{6}{xln^{3}({x}^{x})} - \frac{6log_{{x}^{x}}^{x}ln^{3}(x)}{ln^{3}({x}^{x})} - \frac{12log_{{x}^{x}}^{x}ln^{2}(x)}{ln^{3}({x}^{x})} + \frac{6log_{{x}^{x}}^{x}ln(x)}{xln^{2}({x}^{x})} + \frac{2}{x^{3}ln({x}^{x})} - \frac{6log_{{x}^{x}}^{x}ln^{2}(x)}{ln^{3}({x}^{x})} - \frac{12log_{{x}^{x}}^{x}ln(x)}{ln^{3}({x}^{x})} + \frac{6log_{{x}^{x}}^{x}}{xln^{2}({x}^{x})} + \frac{log_{{x}^{x}}^{x}}{x^{2}ln({x}^{x})} - \frac{6log_{{x}^{x}}^{x}ln(x)}{ln^{3}({x}^{x})} - \frac{6log_{{x}^{x}}^{x}}{ln^{3}({x}^{x})}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。