本次共计算 1 个题目:每一题对 x 求 3 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数log_{{x}^{x}}^{{3}^{{3}^{3}}} 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = log_{{x}^{x}}^{7625597484987}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( log_{{x}^{x}}^{7625597484987}\right)}{dx}\\=&(\frac{(\frac{(0)}{(7625597484987)} - \frac{(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))log_{{x}^{x}}^{7625597484987}}{({x}^{x})})}{(ln({x}^{x}))})\\=&\frac{-log_{{x}^{x}}^{7625597484987}ln(x)}{ln({x}^{x})} - \frac{log_{{x}^{x}}^{7625597484987}}{ln({x}^{x})}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-log_{{x}^{x}}^{7625597484987}ln(x)}{ln({x}^{x})} - \frac{log_{{x}^{x}}^{7625597484987}}{ln({x}^{x})}\right)}{dx}\\=&\frac{-(\frac{(\frac{(0)}{(7625597484987)} - \frac{(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))log_{{x}^{x}}^{7625597484987}}{({x}^{x})})}{(ln({x}^{x}))})ln(x)}{ln({x}^{x})} - \frac{log_{{x}^{x}}^{7625597484987}}{(x)ln({x}^{x})} - \frac{log_{{x}^{x}}^{7625597484987}ln(x)*-({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))}{ln^{2}({x}^{x})({x}^{x})} - \frac{(\frac{(\frac{(0)}{(7625597484987)} - \frac{(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))log_{{x}^{x}}^{7625597484987}}{({x}^{x})})}{(ln({x}^{x}))})}{ln({x}^{x})} - \frac{log_{{x}^{x}}^{7625597484987}*-({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))}{ln^{2}({x}^{x})({x}^{x})}\\=&\frac{2log_{{x}^{x}}^{7625597484987}ln^{2}(x)}{ln^{2}({x}^{x})} + \frac{2log_{{x}^{x}}^{7625597484987}ln(x)}{ln^{2}({x}^{x})} - \frac{log_{{x}^{x}}^{7625597484987}}{xln({x}^{x})} + \frac{2log_{{x}^{x}}^{7625597484987}ln(x)}{ln^{2}({x}^{x})} + \frac{2log_{{x}^{x}}^{7625597484987}}{ln^{2}({x}^{x})}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{2log_{{x}^{x}}^{7625597484987}ln^{2}(x)}{ln^{2}({x}^{x})} + \frac{2log_{{x}^{x}}^{7625597484987}ln(x)}{ln^{2}({x}^{x})} - \frac{log_{{x}^{x}}^{7625597484987}}{xln({x}^{x})} + \frac{2log_{{x}^{x}}^{7625597484987}ln(x)}{ln^{2}({x}^{x})} + \frac{2log_{{x}^{x}}^{7625597484987}}{ln^{2}({x}^{x})}\right)}{dx}\\=&\frac{2(\frac{(\frac{(0)}{(7625597484987)} - \frac{(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))log_{{x}^{x}}^{7625597484987}}{({x}^{x})})}{(ln({x}^{x}))})ln^{2}(x)}{ln^{2}({x}^{x})} + \frac{2log_{{x}^{x}}^{7625597484987}*2ln(x)}{(x)ln^{2}({x}^{x})} + \frac{2log_{{x}^{x}}^{7625597484987}ln^{2}(x)*-2({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))}{ln^{3}({x}^{x})({x}^{x})} + \frac{2(\frac{(\frac{(0)}{(7625597484987)} - \frac{(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))log_{{x}^{x}}^{7625597484987}}{({x}^{x})})}{(ln({x}^{x}))})ln(x)}{ln^{2}({x}^{x})} + \frac{2log_{{x}^{x}}^{7625597484987}*-2({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))ln(x)}{ln^{3}({x}^{x})({x}^{x})} + \frac{2log_{{x}^{x}}^{7625597484987}}{ln^{2}({x}^{x})(x)} - \frac{-log_{{x}^{x}}^{7625597484987}}{x^{2}ln({x}^{x})} - \frac{(\frac{(\frac{(0)}{(7625597484987)} - \frac{(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))log_{{x}^{x}}^{7625597484987}}{({x}^{x})})}{(ln({x}^{x}))})}{xln({x}^{x})} - \frac{log_{{x}^{x}}^{7625597484987}*-({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))}{xln^{2}({x}^{x})({x}^{x})} + \frac{2(\frac{(\frac{(0)}{(7625597484987)} - \frac{(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))log_{{x}^{x}}^{7625597484987}}{({x}^{x})})}{(ln({x}^{x}))})ln(x)}{ln^{2}({x}^{x})} + \frac{2log_{{x}^{x}}^{7625597484987}}{(x)ln^{2}({x}^{x})} + \frac{2log_{{x}^{x}}^{7625597484987}ln(x)*-2({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))}{ln^{3}({x}^{x})({x}^{x})} + \frac{2(\frac{(\frac{(0)}{(7625597484987)} - \frac{(({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))log_{{x}^{x}}^{7625597484987}}{({x}^{x})})}{(ln({x}^{x}))})}{ln^{2}({x}^{x})} + \frac{2log_{{x}^{x}}^{7625597484987}*-2({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))}{ln^{3}({x}^{x})({x}^{x})}\\=&\frac{-6log_{{x}^{x}}^{7625597484987}ln^{3}(x)}{ln^{3}({x}^{x})} - \frac{12log_{{x}^{x}}^{7625597484987}ln^{2}(x)}{ln^{3}({x}^{x})} + \frac{6log_{{x}^{x}}^{7625597484987}ln(x)}{xln^{2}({x}^{x})} - \frac{6log_{{x}^{x}}^{7625597484987}ln^{2}(x)}{ln^{3}({x}^{x})} - \frac{12log_{{x}^{x}}^{7625597484987}ln(x)}{ln^{3}({x}^{x})} + \frac{6log_{{x}^{x}}^{7625597484987}}{xln^{2}({x}^{x})} + \frac{log_{{x}^{x}}^{7625597484987}}{x^{2}ln({x}^{x})} - \frac{6log_{{x}^{x}}^{7625597484987}ln(x)}{ln^{3}({x}^{x})} - \frac{6log_{{x}^{x}}^{7625597484987}}{ln^{3}({x}^{x})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!