本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(sin(x) + 2xcos(x))sqrt(x)}{2} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{2}sin(x)sqrt(x) + xcos(x)sqrt(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{2}sin(x)sqrt(x) + xcos(x)sqrt(x)\right)}{dx}\\=&\frac{1}{2}cos(x)sqrt(x) + \frac{\frac{1}{2}sin(x)*\frac{1}{2}}{(x)^{\frac{1}{2}}} + cos(x)sqrt(x) + x*-sin(x)sqrt(x) + \frac{xcos(x)*\frac{1}{2}}{(x)^{\frac{1}{2}}}\\=&\frac{3cos(x)sqrt(x)}{2} + \frac{sin(x)}{4x^{\frac{1}{2}}} - xsin(x)sqrt(x) + \frac{x^{\frac{1}{2}}cos(x)}{2}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!