本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数e^{2}xsin(x) + e^{2} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = xe^{2}sin(x) + e^{2}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( xe^{2}sin(x) + e^{2}\right)}{dx}\\=&e^{2}sin(x) + xe^{2}*0sin(x) + xe^{2}cos(x) + e^{2}*0\\=&e^{2}sin(x) + xe^{2}cos(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( e^{2}sin(x) + xe^{2}cos(x)\right)}{dx}\\=&e^{2}*0sin(x) + e^{2}cos(x) + e^{2}cos(x) + xe^{2}*0cos(x) + xe^{2}*-sin(x)\\=&2e^{2}cos(x) - xe^{2}sin(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!