本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数-(arcsin({e}^{x}){\frac{1}{e}}^{x} - \frac{ln(\frac{(sqrt(1 - {e}^{2}x) + 1)}{(sqrt(1 - {e}^{2}x) - 1)})}{2}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = -{\frac{1}{e}}^{x}arcsin({e}^{x}) + \frac{1}{2}ln(\frac{sqrt(-xe^{2} + 1)}{(sqrt(-xe^{2} + 1) - 1)} + \frac{1}{(sqrt(-xe^{2} + 1) - 1)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( -{\frac{1}{e}}^{x}arcsin({e}^{x}) + \frac{1}{2}ln(\frac{sqrt(-xe^{2} + 1)}{(sqrt(-xe^{2} + 1) - 1)} + \frac{1}{(sqrt(-xe^{2} + 1) - 1)})\right)}{dx}\\=&-({\frac{1}{e}}^{x}((1)ln(\frac{1}{e}) + \frac{(x)(\frac{-0}{e^{2}})}{(\frac{1}{e})}))arcsin({e}^{x}) - {\frac{1}{e}}^{x}(\frac{(({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{((1 - ({e}^{x})^{2})^{\frac{1}{2}})}) + \frac{\frac{1}{2}((\frac{-(\frac{(-e^{2} - x*2e*0 + 0)*\frac{1}{2}}{(-xe^{2} + 1)^{\frac{1}{2}}} + 0)}{(sqrt(-xe^{2} + 1) - 1)^{2}})sqrt(-xe^{2} + 1) + \frac{(-e^{2} - x*2e*0 + 0)*\frac{1}{2}}{(sqrt(-xe^{2} + 1) - 1)(-xe^{2} + 1)^{\frac{1}{2}}} + (\frac{-(\frac{(-e^{2} - x*2e*0 + 0)*\frac{1}{2}}{(-xe^{2} + 1)^{\frac{1}{2}}} + 0)}{(sqrt(-xe^{2} + 1) - 1)^{2}}))}{(\frac{sqrt(-xe^{2} + 1)}{(sqrt(-xe^{2} + 1) - 1)} + \frac{1}{(sqrt(-xe^{2} + 1) - 1)})}\\=&{\frac{1}{e}}^{x}arcsin({e}^{x}) - \frac{{e}^{x}{\frac{1}{e}}^{x}}{(-{e}^{(2x)} + 1)^{\frac{1}{2}}} + \frac{e^{2}sqrt(-xe^{2} + 1)}{4(sqrt(-xe^{2} + 1) - 1)^{2}(\frac{sqrt(-xe^{2} + 1)}{(sqrt(-xe^{2} + 1) - 1)} + \frac{1}{(sqrt(-xe^{2} + 1) - 1)})(-xe^{2} + 1)^{\frac{1}{2}}} - \frac{e^{2}}{4(\frac{sqrt(-xe^{2} + 1)}{(sqrt(-xe^{2} + 1) - 1)} + \frac{1}{(sqrt(-xe^{2} + 1) - 1)})(sqrt(-xe^{2} + 1) - 1)(-xe^{2} + 1)^{\frac{1}{2}}} + \frac{e^{2}}{4(sqrt(-xe^{2} + 1) - 1)^{2}(\frac{sqrt(-xe^{2} + 1)}{(sqrt(-xe^{2} + 1) - 1)} + \frac{1}{(sqrt(-xe^{2} + 1) - 1)})(-xe^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!