本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{2.78x(x - 1)}{(x + 1400)*2.78(x + 1399)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x^{2}}{(x + 1400)(x + 1399)} - \frac{x}{(x + 1400)(x + 1399)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x^{2}}{(x + 1400)(x + 1399)} - \frac{x}{(x + 1400)(x + 1399)}\right)}{dx}\\=&\frac{(\frac{-(1 + 0)}{(x + 1400)^{2}})x^{2}}{(x + 1399)} + \frac{(\frac{-(1 + 0)}{(x + 1399)^{2}})x^{2}}{(x + 1400)} + \frac{*2x}{(x + 1400)(x + 1399)} - \frac{(\frac{-(1 + 0)}{(x + 1400)^{2}})x}{(x + 1399)} - \frac{(\frac{-(1 + 0)}{(x + 1399)^{2}})x}{(x + 1400)} - \frac{1}{(x + 1400)(x + 1399)}\\=&\frac{-x^{2}}{(x + 1400)(x + 1400)(x + 1399)} - \frac{x^{2}}{(x + 1400)(x + 1399)(x + 1399)} + \frac{2x}{(x + 1400)(x + 1399)} + \frac{x}{(x + 1400)(x + 1400)(x + 1399)} + \frac{x}{(x + 1400)(x + 1399)(x + 1399)} - \frac{1}{(x + 1400)(x + 1399)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!