本次共计算 1 个题目:每一题对 z 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数z{({r}^{2} + {z}^{2})}^{\frac{-3}{2}} + (h - z){({r}^{2} + {(h - z)}^{2})}^{\frac{-3}{2}} 关于 z 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{z}{(r^{2} + z^{2})^{\frac{3}{2}}} + \frac{h}{(r^{2} - 2hz + h^{2} + z^{2})^{\frac{3}{2}}} - \frac{z}{(r^{2} - 2hz + h^{2} + z^{2})^{\frac{3}{2}}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{z}{(r^{2} + z^{2})^{\frac{3}{2}}} + \frac{h}{(r^{2} - 2hz + h^{2} + z^{2})^{\frac{3}{2}}} - \frac{z}{(r^{2} - 2hz + h^{2} + z^{2})^{\frac{3}{2}}}\right)}{dz}\\=&(\frac{\frac{-3}{2}(0 + 2z)}{(r^{2} + z^{2})^{\frac{5}{2}}})z + \frac{1}{(r^{2} + z^{2})^{\frac{3}{2}}} + (\frac{\frac{-3}{2}(0 - 2h + 0 + 2z)}{(r^{2} - 2hz + h^{2} + z^{2})^{\frac{5}{2}}})h + 0 - (\frac{\frac{-3}{2}(0 - 2h + 0 + 2z)}{(r^{2} - 2hz + h^{2} + z^{2})^{\frac{5}{2}}})z - \frac{1}{(r^{2} - 2hz + h^{2} + z^{2})^{\frac{3}{2}}}\\=&\frac{-3z^{2}}{(r^{2} + z^{2})^{\frac{5}{2}}} - \frac{6hz}{(r^{2} - 2hz + h^{2} + z^{2})^{\frac{5}{2}}} + \frac{3h^{2}}{(r^{2} - 2hz + h^{2} + z^{2})^{\frac{5}{2}}} + \frac{3z^{2}}{(r^{2} - 2hz + h^{2} + z^{2})^{\frac{5}{2}}} + \frac{1}{(r^{2} + z^{2})^{\frac{3}{2}}} - \frac{1}{(r^{2} - 2hz + h^{2} + z^{2})^{\frac{3}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!