本次共计算 1 个题目:每一题对 x 求 3 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(2{x}^{2} + 5x - 3) 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(2x^{2} + 5x - 3)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(2x^{2} + 5x - 3)\right)}{dx}\\=&\frac{(2*2x + 5 + 0)}{(2x^{2} + 5x - 3)}\\=&\frac{4x}{(2x^{2} + 5x - 3)} + \frac{5}{(2x^{2} + 5x - 3)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{4x}{(2x^{2} + 5x - 3)} + \frac{5}{(2x^{2} + 5x - 3)}\right)}{dx}\\=&4(\frac{-(2*2x + 5 + 0)}{(2x^{2} + 5x - 3)^{2}})x + \frac{4}{(2x^{2} + 5x - 3)} + 5(\frac{-(2*2x + 5 + 0)}{(2x^{2} + 5x - 3)^{2}})\\=&\frac{-16x^{2}}{(2x^{2} + 5x - 3)^{2}} - \frac{40x}{(2x^{2} + 5x - 3)^{2}} + \frac{4}{(2x^{2} + 5x - 3)} - \frac{25}{(2x^{2} + 5x - 3)^{2}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-16x^{2}}{(2x^{2} + 5x - 3)^{2}} - \frac{40x}{(2x^{2} + 5x - 3)^{2}} + \frac{4}{(2x^{2} + 5x - 3)} - \frac{25}{(2x^{2} + 5x - 3)^{2}}\right)}{dx}\\=&-16(\frac{-2(2*2x + 5 + 0)}{(2x^{2} + 5x - 3)^{3}})x^{2} - \frac{16*2x}{(2x^{2} + 5x - 3)^{2}} - 40(\frac{-2(2*2x + 5 + 0)}{(2x^{2} + 5x - 3)^{3}})x - \frac{40}{(2x^{2} + 5x - 3)^{2}} + 4(\frac{-(2*2x + 5 + 0)}{(2x^{2} + 5x - 3)^{2}}) - 25(\frac{-2(2*2x + 5 + 0)}{(2x^{2} + 5x - 3)^{3}})\\=&\frac{128x^{3}}{(2x^{2} + 5x - 3)^{3}} + \frac{480x^{2}}{(2x^{2} + 5x - 3)^{3}} - \frac{48x}{(2x^{2} + 5x - 3)^{2}} + \frac{600x}{(2x^{2} + 5x - 3)^{3}} - \frac{60}{(2x^{2} + 5x - 3)^{2}} + \frac{250}{(2x^{2} + 5x - 3)^{3}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!