本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数-sin(x)cos(sin(x)) - sin(sin(x))cos(2)(x) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = -sin(x)cos(sin(x)) - xsin(sin(x))cos(2)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( -sin(x)cos(sin(x)) - xsin(sin(x))cos(2)\right)}{dx}\\=&-cos(x)cos(sin(x)) - sin(x)*-sin(sin(x))cos(x) - sin(sin(x))cos(2) - xcos(sin(x))cos(x)cos(2) - xsin(sin(x))*-sin(2)*0\\=&-cos(x)cos(sin(x)) + sin(x)sin(sin(x))cos(x) - sin(sin(x))cos(2) - xcos(x)cos(sin(x))cos(2)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!