本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(csc(ln(x)) + tan(lg(x)))cos(x)}{sin(x)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{cos(x)csc(ln(x))}{sin(x)} + \frac{cos(x)tan(lg(x))}{sin(x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{cos(x)csc(ln(x))}{sin(x)} + \frac{cos(x)tan(lg(x))}{sin(x)}\right)}{dx}\\=&\frac{-cos(x)cos(x)csc(ln(x))}{sin^{2}(x)} + \frac{-sin(x)csc(ln(x))}{sin(x)} + \frac{cos(x)*-csc(ln(x))cot(ln(x))}{sin(x)(x)} + \frac{-cos(x)cos(x)tan(lg(x))}{sin^{2}(x)} + \frac{-sin(x)tan(lg(x))}{sin(x)} + \frac{cos(x)sec^{2}(lg(x))(\frac{1}{ln{10}(x)})}{sin(x)}\\=&\frac{-cos^{2}(x)csc(ln(x))}{sin^{2}(x)} - csc(ln(x)) - \frac{cos(x)cot(ln(x))csc(ln(x))}{xsin(x)} - \frac{cos^{2}(x)tan(lg(x))}{sin^{2}(x)} - tan(lg(x)) + \frac{cos(x)sec^{2}(lg(x))}{xln{10}sin(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!