本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(6lg(2)x + 8tan(3)x + ln(x)){\frac{1}{cos(x)}}^{sin(x)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 6x{\frac{1}{cos(x)}}^{sin(x)}lg(2) + 8x{\frac{1}{cos(x)}}^{sin(x)}tan(3) + {\frac{1}{cos(x)}}^{sin(x)}ln(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 6x{\frac{1}{cos(x)}}^{sin(x)}lg(2) + 8x{\frac{1}{cos(x)}}^{sin(x)}tan(3) + {\frac{1}{cos(x)}}^{sin(x)}ln(x)\right)}{dx}\\=&6{\frac{1}{cos(x)}}^{sin(x)}lg(2) + 6x({\frac{1}{cos(x)}}^{sin(x)}((cos(x))ln(\frac{1}{cos(x)}) + \frac{(sin(x))(\frac{sin(x)}{cos^{2}(x)})}{(\frac{1}{cos(x)})}))lg(2) + \frac{6x{\frac{1}{cos(x)}}^{sin(x)}*0}{ln{10}(2)} + 8{\frac{1}{cos(x)}}^{sin(x)}tan(3) + 8x({\frac{1}{cos(x)}}^{sin(x)}((cos(x))ln(\frac{1}{cos(x)}) + \frac{(sin(x))(\frac{sin(x)}{cos^{2}(x)})}{(\frac{1}{cos(x)})}))tan(3) + 8x{\frac{1}{cos(x)}}^{sin(x)}sec^{2}(3)(0) + ({\frac{1}{cos(x)}}^{sin(x)}((cos(x))ln(\frac{1}{cos(x)}) + \frac{(sin(x))(\frac{sin(x)}{cos^{2}(x)})}{(\frac{1}{cos(x)})}))ln(x) + \frac{{\frac{1}{cos(x)}}^{sin(x)}}{(x)}\\=&6{\frac{1}{cos(x)}}^{sin(x)}lg(2) + 6x{\frac{1}{cos(x)}}^{sin(x)}ln(\frac{1}{cos(x)})lg(2)cos(x) + \frac{6x{\frac{1}{cos(x)}}^{sin(x)}lg(2)sin^{2}(x)}{cos(x)} + 8{\frac{1}{cos(x)}}^{sin(x)}tan(3) + 8x{\frac{1}{cos(x)}}^{sin(x)}ln(\frac{1}{cos(x)})cos(x)tan(3) + \frac{8x{\frac{1}{cos(x)}}^{sin(x)}sin^{2}(x)tan(3)}{cos(x)} + {\frac{1}{cos(x)}}^{sin(x)}ln(\frac{1}{cos(x)})ln(x)cos(x) + \frac{{\frac{1}{cos(x)}}^{sin(x)}ln(x)sin^{2}(x)}{cos(x)} + \frac{{\frac{1}{cos(x)}}^{sin(x)}}{x}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!