本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{({(x + 1)}^{2}){(3 - x)}^{3}}{sqrt(x + 3)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-x^{5}}{sqrt(x + 3)} + \frac{7x^{4}}{sqrt(x + 3)} - \frac{10x^{3}}{sqrt(x + 3)} - \frac{18x^{2}}{sqrt(x + 3)} + \frac{27x}{sqrt(x + 3)} + \frac{27}{sqrt(x + 3)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-x^{5}}{sqrt(x + 3)} + \frac{7x^{4}}{sqrt(x + 3)} - \frac{10x^{3}}{sqrt(x + 3)} - \frac{18x^{2}}{sqrt(x + 3)} + \frac{27x}{sqrt(x + 3)} + \frac{27}{sqrt(x + 3)}\right)}{dx}\\=&\frac{-5x^{4}}{sqrt(x + 3)} - \frac{x^{5}*-(1 + 0)*\frac{1}{2}}{(x + 3)(x + 3)^{\frac{1}{2}}} + \frac{7*4x^{3}}{sqrt(x + 3)} + \frac{7x^{4}*-(1 + 0)*\frac{1}{2}}{(x + 3)(x + 3)^{\frac{1}{2}}} - \frac{10*3x^{2}}{sqrt(x + 3)} - \frac{10x^{3}*-(1 + 0)*\frac{1}{2}}{(x + 3)(x + 3)^{\frac{1}{2}}} - \frac{18*2x}{sqrt(x + 3)} - \frac{18x^{2}*-(1 + 0)*\frac{1}{2}}{(x + 3)(x + 3)^{\frac{1}{2}}} + \frac{27}{sqrt(x + 3)} + \frac{27x*-(1 + 0)*\frac{1}{2}}{(x + 3)(x + 3)^{\frac{1}{2}}} + \frac{27*-(1 + 0)*\frac{1}{2}}{(x + 3)(x + 3)^{\frac{1}{2}}}\\=&\frac{-5x^{4}}{sqrt(x + 3)} + \frac{x^{5}}{2(x + 3)^{\frac{3}{2}}} + \frac{28x^{3}}{sqrt(x + 3)} - \frac{7x^{4}}{2(x + 3)^{\frac{3}{2}}} - \frac{30x^{2}}{sqrt(x + 3)} + \frac{5x^{3}}{(x + 3)^{\frac{3}{2}}} - \frac{36x}{sqrt(x + 3)} + \frac{9x^{2}}{(x + 3)^{\frac{3}{2}}} + \frac{27}{sqrt(x + 3)} - \frac{27x}{2(x + 3)^{\frac{3}{2}}} - \frac{27}{2(x + 3)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!