本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(x - 1)}{(x + 1)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x}{(x + 1)} - \frac{1}{(x + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x}{(x + 1)} - \frac{1}{(x + 1)}\right)}{dx}\\=&(\frac{-(1 + 0)}{(x + 1)^{2}})x + \frac{1}{(x + 1)} - (\frac{-(1 + 0)}{(x + 1)^{2}})\\=&\frac{-x}{(x + 1)^{2}} + \frac{1}{(x + 1)^{2}} + \frac{1}{(x + 1)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-x}{(x + 1)^{2}} + \frac{1}{(x + 1)^{2}} + \frac{1}{(x + 1)}\right)}{dx}\\=&-(\frac{-2(1 + 0)}{(x + 1)^{3}})x - \frac{1}{(x + 1)^{2}} + (\frac{-2(1 + 0)}{(x + 1)^{3}}) + (\frac{-(1 + 0)}{(x + 1)^{2}})\\=&\frac{2x}{(x + 1)^{3}} - \frac{2}{(x + 1)^{3}} - \frac{2}{(x + 1)^{2}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{2x}{(x + 1)^{3}} - \frac{2}{(x + 1)^{3}} - \frac{2}{(x + 1)^{2}}\right)}{dx}\\=&2(\frac{-3(1 + 0)}{(x + 1)^{4}})x + \frac{2}{(x + 1)^{3}} - 2(\frac{-3(1 + 0)}{(x + 1)^{4}}) - 2(\frac{-2(1 + 0)}{(x + 1)^{3}})\\=&\frac{-6x}{(x + 1)^{4}} + \frac{6}{(x + 1)^{4}} + \frac{6}{(x + 1)^{3}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{-6x}{(x + 1)^{4}} + \frac{6}{(x + 1)^{4}} + \frac{6}{(x + 1)^{3}}\right)}{dx}\\=&-6(\frac{-4(1 + 0)}{(x + 1)^{5}})x - \frac{6}{(x + 1)^{4}} + 6(\frac{-4(1 + 0)}{(x + 1)^{5}}) + 6(\frac{-3(1 + 0)}{(x + 1)^{4}})\\=&\frac{24x}{(x + 1)^{5}} - \frac{24}{(x + 1)^{5}} - \frac{24}{(x + 1)^{4}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!