本次共计算 1 个题目:每一题对 z 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{z}{sin(z)} 关于 z 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{z}{sin(z)}\right)}{dz}\\=&\frac{1}{sin(z)} + \frac{z*-cos(z)}{sin^{2}(z)}\\=&\frac{1}{sin(z)} - \frac{zcos(z)}{sin^{2}(z)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{1}{sin(z)} - \frac{zcos(z)}{sin^{2}(z)}\right)}{dz}\\=&\frac{-cos(z)}{sin^{2}(z)} - \frac{cos(z)}{sin^{2}(z)} - \frac{z*-2cos(z)cos(z)}{sin^{3}(z)} - \frac{z*-sin(z)}{sin^{2}(z)}\\=&\frac{-2cos(z)}{sin^{2}(z)} + \frac{2zcos^{2}(z)}{sin^{3}(z)} + \frac{z}{sin(z)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!