本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{{e}^{3}x}{16} - (\frac{x}{4} + \frac{1}{16}){\frac{1}{e}}^{x} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{16}xe^{3} - \frac{1}{4}x{\frac{1}{e}}^{x} - \frac{1}{16}{\frac{1}{e}}^{x}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{16}xe^{3} - \frac{1}{4}x{\frac{1}{e}}^{x} - \frac{1}{16}{\frac{1}{e}}^{x}\right)}{dx}\\=&\frac{1}{16}e^{3} + \frac{1}{16}x*3e^{2}*0 - \frac{1}{4}{\frac{1}{e}}^{x} - \frac{1}{4}x({\frac{1}{e}}^{x}((1)ln(\frac{1}{e}) + \frac{(x)(\frac{-0}{e^{2}})}{(\frac{1}{e})})) - \frac{1}{16}({\frac{1}{e}}^{x}((1)ln(\frac{1}{e}) + \frac{(x)(\frac{-0}{e^{2}})}{(\frac{1}{e})}))\\=&\frac{e^{3}}{16} - \frac{3{\frac{1}{e}}^{x}}{16} + \frac{x{\frac{1}{e}}^{x}}{4}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{e^{3}}{16} - \frac{3{\frac{1}{e}}^{x}}{16} + \frac{x{\frac{1}{e}}^{x}}{4}\right)}{dx}\\=&\frac{3e^{2}*0}{16} - \frac{3({\frac{1}{e}}^{x}((1)ln(\frac{1}{e}) + \frac{(x)(\frac{-0}{e^{2}})}{(\frac{1}{e})}))}{16} + \frac{{\frac{1}{e}}^{x}}{4} + \frac{x({\frac{1}{e}}^{x}((1)ln(\frac{1}{e}) + \frac{(x)(\frac{-0}{e^{2}})}{(\frac{1}{e})}))}{4}\\=&\frac{7{\frac{1}{e}}^{x}}{16} - \frac{x{\frac{1}{e}}^{x}}{4}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!