本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt(\frac{(1 + x)}{(1 - x)}) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sqrt(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})\right)}{dx}\\=&\frac{((\frac{-(-1 + 0)}{(-x + 1)^{2}})x + \frac{1}{(-x + 1)} + (\frac{-(-1 + 0)}{(-x + 1)^{2}}))*\frac{1}{2}}{(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{1}{2}}}\\=&\frac{x}{2(-x + 1)^{2}(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{1}{2}}} + \frac{1}{2(-x + 1)^{2}(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{1}{2}}} + \frac{1}{2(-x + 1)(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{x}{2(-x + 1)^{2}(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{1}{2}}} + \frac{1}{2(-x + 1)^{2}(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{1}{2}}} + \frac{1}{2(-x + 1)(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{1}{2}}}\right)}{dx}\\=&\frac{(\frac{-2(-1 + 0)}{(-x + 1)^{3}})x}{2(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{1}{2}}} + \frac{(\frac{\frac{-1}{2}((\frac{-(-1 + 0)}{(-x + 1)^{2}})x + \frac{1}{(-x + 1)} + (\frac{-(-1 + 0)}{(-x + 1)^{2}}))}{(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{3}{2}}})x}{2(-x + 1)^{2}} + \frac{1}{2(-x + 1)^{2}(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{1}{2}}} + \frac{(\frac{-2(-1 + 0)}{(-x + 1)^{3}})}{2(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{1}{2}}} + \frac{(\frac{\frac{-1}{2}((\frac{-(-1 + 0)}{(-x + 1)^{2}})x + \frac{1}{(-x + 1)} + (\frac{-(-1 + 0)}{(-x + 1)^{2}}))}{(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{3}{2}}})}{2(-x + 1)^{2}} + \frac{(\frac{-(-1 + 0)}{(-x + 1)^{2}})}{2(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{1}{2}}} + \frac{(\frac{\frac{-1}{2}((\frac{-(-1 + 0)}{(-x + 1)^{2}})x + \frac{1}{(-x + 1)} + (\frac{-(-1 + 0)}{(-x + 1)^{2}}))}{(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{3}{2}}})}{2(-x + 1)}\\=&\frac{x}{(-x + 1)^{3}(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{1}{2}}} - \frac{x^{2}}{4(-x + 1)^{4}(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{3}{2}}} - \frac{x}{4(-x + 1)^{3}(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{3}{2}}} - \frac{x}{2(-x + 1)^{4}(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{3}{2}}} - \frac{x}{4(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{3}{2}}(-x + 1)^{3}} + \frac{1}{(-x + 1)^{2}(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{1}{2}}} - \frac{1}{4(-x + 1)^{4}(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{3}{2}}} + \frac{1}{(-x + 1)^{3}(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{1}{2}}} - \frac{1}{4(-x + 1)^{3}(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{3}{2}}} - \frac{1}{4(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{3}{2}}(-x + 1)^{3}} - \frac{1}{4(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})^{\frac{3}{2}}(-x + 1)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!