本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(xy + {e}^{(xy)})}{(sec(x)sec(x))} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{yx}{sec^{2}(x)} + \frac{{e}^{(yx)}}{sec^{2}(x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{yx}{sec^{2}(x)} + \frac{{e}^{(yx)}}{sec^{2}(x)}\right)}{dx}\\=&\frac{y}{sec^{2}(x)} + \frac{yx*-2tan(x)}{sec^{2}(x)} + \frac{({e}^{(yx)}((y)ln(e) + \frac{(yx)(0)}{(e)}))}{sec^{2}(x)} + \frac{{e}^{(yx)}*-2tan(x)}{sec^{2}(x)}\\=&\frac{y}{sec^{2}(x)} - \frac{2yxtan(x)}{sec^{2}(x)} + \frac{y{e}^{(yx)}}{sec^{2}(x)} - \frac{2{e}^{(yx)}tan(x)}{sec^{2}(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{y}{sec^{2}(x)} - \frac{2yxtan(x)}{sec^{2}(x)} + \frac{y{e}^{(yx)}}{sec^{2}(x)} - \frac{2{e}^{(yx)}tan(x)}{sec^{2}(x)}\right)}{dx}\\=&\frac{y*-2tan(x)}{sec^{2}(x)} - \frac{2ytan(x)}{sec^{2}(x)} - \frac{2yxsec^{2}(x)(1)}{sec^{2}(x)} - \frac{2yxtan(x)*-2tan(x)}{sec^{2}(x)} + \frac{y({e}^{(yx)}((y)ln(e) + \frac{(yx)(0)}{(e)}))}{sec^{2}(x)} + \frac{y{e}^{(yx)}*-2tan(x)}{sec^{2}(x)} - \frac{2({e}^{(yx)}((y)ln(e) + \frac{(yx)(0)}{(e)}))tan(x)}{sec^{2}(x)} - \frac{2{e}^{(yx)}sec^{2}(x)(1)}{sec^{2}(x)} - \frac{2{e}^{(yx)}tan(x)*-2tan(x)}{sec^{2}(x)}\\=&\frac{-4ytan(x)}{sec^{2}(x)} + \frac{4yxtan^{2}(x)}{sec^{2}(x)} - 2yx + \frac{y^{2}{e}^{(yx)}}{sec^{2}(x)} - \frac{4y{e}^{(yx)}tan(x)}{sec^{2}(x)} + \frac{4{e}^{(yx)}tan^{2}(x)}{sec^{2}(x)} - 2{e}^{(yx)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!