本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(xy + {e}^{x}y)sec(x)}{sec(x)} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = yx + y{e}^{x}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( yx + y{e}^{x}\right)}{dx}\\=&y + y({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&y{e}^{x} + y\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( y{e}^{x} + y\right)}{dx}\\=&y({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 0\\=&y{e}^{x}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!