本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(x - 1.56)}^{3}(x - 4.56) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = x^{4} - 1.56x^{3} - 1.56x^{3} + 2.4336x^{2} - 1.56x^{3} + 2.4336x^{2} + 2.4336x^{2} - 3.796416x - 4.56x^{3} + 7.1136x^{2} + 7.1136x^{2} - 11.097216x + 7.1136x^{2} - 11.097216x - 11.097216x + 17.31165696\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( x^{4} - 1.56x^{3} - 1.56x^{3} + 2.4336x^{2} - 1.56x^{3} + 2.4336x^{2} + 2.4336x^{2} - 3.796416x - 4.56x^{3} + 7.1136x^{2} + 7.1136x^{2} - 11.097216x + 7.1136x^{2} - 11.097216x - 11.097216x + 17.31165696\right)}{dx}\\=&4x^{3} - 1.56*3x^{2} - 1.56*3x^{2} + 2.4336*2x - 1.56*3x^{2} + 2.4336*2x + 2.4336*2x - 3.796416 - 4.56*3x^{2} + 7.1136*2x + 7.1136*2x - 11.097216 + 7.1136*2x - 11.097216 - 11.097216 + 0\\=&4x^{3} - 4.68x^{2} - 4.68x^{2} + 4.8672x - 4.68x^{2} + 4.8672x + 4.8672x - 13.68x^{2} + 14.2272x + 14.2272x + 14.2272x - 37.088064\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!