本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(1 - {x}^{\frac{1}{2}})}^{-1} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{(-x^{\frac{1}{2}} + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{(-x^{\frac{1}{2}} + 1)}\right)}{dx}\\=&(\frac{-(\frac{-\frac{1}{2}}{x^{\frac{1}{2}}} + 0)}{(-x^{\frac{1}{2}} + 1)^{2}})\\=&\frac{1}{2(-x^{\frac{1}{2}} + 1)^{2}x^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{1}{2(-x^{\frac{1}{2}} + 1)^{2}x^{\frac{1}{2}}}\right)}{dx}\\=&\frac{(\frac{-2(\frac{-\frac{1}{2}}{x^{\frac{1}{2}}} + 0)}{(-x^{\frac{1}{2}} + 1)^{3}})}{2x^{\frac{1}{2}}} + \frac{\frac{-1}{2}}{2(-x^{\frac{1}{2}} + 1)^{2}x^{\frac{3}{2}}}\\=&\frac{1}{2(-x^{\frac{1}{2}} + 1)^{3}x} - \frac{1}{4(-x^{\frac{1}{2}} + 1)^{2}x^{\frac{3}{2}}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{1}{2(-x^{\frac{1}{2}} + 1)^{3}x} - \frac{1}{4(-x^{\frac{1}{2}} + 1)^{2}x^{\frac{3}{2}}}\right)}{dx}\\=&\frac{(\frac{-3(\frac{-\frac{1}{2}}{x^{\frac{1}{2}}} + 0)}{(-x^{\frac{1}{2}} + 1)^{4}})}{2x} + \frac{-1}{2(-x^{\frac{1}{2}} + 1)^{3}x^{2}} - \frac{(\frac{-2(\frac{-\frac{1}{2}}{x^{\frac{1}{2}}} + 0)}{(-x^{\frac{1}{2}} + 1)^{3}})}{4x^{\frac{3}{2}}} - \frac{\frac{-3}{2}}{4(-x^{\frac{1}{2}} + 1)^{2}x^{\frac{5}{2}}}\\=&\frac{3}{4(-x^{\frac{1}{2}} + 1)^{4}x^{\frac{3}{2}}} - \frac{3}{4(-x^{\frac{1}{2}} + 1)^{3}x^{2}} + \frac{3}{8(-x^{\frac{1}{2}} + 1)^{2}x^{\frac{5}{2}}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{3}{4(-x^{\frac{1}{2}} + 1)^{4}x^{\frac{3}{2}}} - \frac{3}{4(-x^{\frac{1}{2}} + 1)^{3}x^{2}} + \frac{3}{8(-x^{\frac{1}{2}} + 1)^{2}x^{\frac{5}{2}}}\right)}{dx}\\=&\frac{3(\frac{-4(\frac{-\frac{1}{2}}{x^{\frac{1}{2}}} + 0)}{(-x^{\frac{1}{2}} + 1)^{5}})}{4x^{\frac{3}{2}}} + \frac{3*\frac{-3}{2}}{4(-x^{\frac{1}{2}} + 1)^{4}x^{\frac{5}{2}}} - \frac{3(\frac{-3(\frac{-\frac{1}{2}}{x^{\frac{1}{2}}} + 0)}{(-x^{\frac{1}{2}} + 1)^{4}})}{4x^{2}} - \frac{3*-2}{4(-x^{\frac{1}{2}} + 1)^{3}x^{3}} + \frac{3(\frac{-2(\frac{-\frac{1}{2}}{x^{\frac{1}{2}}} + 0)}{(-x^{\frac{1}{2}} + 1)^{3}})}{8x^{\frac{5}{2}}} + \frac{3*\frac{-5}{2}}{8(-x^{\frac{1}{2}} + 1)^{2}x^{\frac{7}{2}}}\\=&\frac{3}{2(-x^{\frac{1}{2}} + 1)^{5}x^{2}} - \frac{9}{4(-x^{\frac{1}{2}} + 1)^{4}x^{\frac{5}{2}}} + \frac{15}{8(-x^{\frac{1}{2}} + 1)^{3}x^{3}} - \frac{15}{16(-x^{\frac{1}{2}} + 1)^{2}x^{\frac{7}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!