本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数tan(3)x{\frac{1}{(x + 7)}}^{4} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{xtan(3)}{(x + 7)^{4}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{xtan(3)}{(x + 7)^{4}}\right)}{dx}\\=&(\frac{-4(1 + 0)}{(x + 7)^{5}})xtan(3) + \frac{tan(3)}{(x + 7)^{4}} + \frac{xsec^{2}(3)(0)}{(x + 7)^{4}}\\=&\frac{-4xtan(3)}{(x + 7)^{5}} + \frac{tan(3)}{(x + 7)^{4}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-4xtan(3)}{(x + 7)^{5}} + \frac{tan(3)}{(x + 7)^{4}}\right)}{dx}\\=&-4(\frac{-5(1 + 0)}{(x + 7)^{6}})xtan(3) - \frac{4tan(3)}{(x + 7)^{5}} - \frac{4xsec^{2}(3)(0)}{(x + 7)^{5}} + (\frac{-4(1 + 0)}{(x + 7)^{5}})tan(3) + \frac{sec^{2}(3)(0)}{(x + 7)^{4}}\\=&\frac{20xtan(3)}{(x + 7)^{6}} - \frac{8tan(3)}{(x + 7)^{5}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{20xtan(3)}{(x + 7)^{6}} - \frac{8tan(3)}{(x + 7)^{5}}\right)}{dx}\\=&20(\frac{-6(1 + 0)}{(x + 7)^{7}})xtan(3) + \frac{20tan(3)}{(x + 7)^{6}} + \frac{20xsec^{2}(3)(0)}{(x + 7)^{6}} - 8(\frac{-5(1 + 0)}{(x + 7)^{6}})tan(3) - \frac{8sec^{2}(3)(0)}{(x + 7)^{5}}\\=&\frac{-120xtan(3)}{(x + 7)^{7}} + \frac{60tan(3)}{(x + 7)^{6}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{-120xtan(3)}{(x + 7)^{7}} + \frac{60tan(3)}{(x + 7)^{6}}\right)}{dx}\\=&-120(\frac{-7(1 + 0)}{(x + 7)^{8}})xtan(3) - \frac{120tan(3)}{(x + 7)^{7}} - \frac{120xsec^{2}(3)(0)}{(x + 7)^{7}} + 60(\frac{-6(1 + 0)}{(x + 7)^{7}})tan(3) + \frac{60sec^{2}(3)(0)}{(x + 7)^{6}}\\=&\frac{840xtan(3)}{(x + 7)^{8}} - \frac{480tan(3)}{(x + 7)^{7}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!