本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(x - a){\frac{1}{({(x - a)}^{2} + {b}^{2})}}^{\frac{1}{2}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x}{(x^{2} - 2ax + a^{2} + b^{2})^{\frac{1}{2}}} - \frac{a}{(x^{2} - 2ax + a^{2} + b^{2})^{\frac{1}{2}}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x}{(x^{2} - 2ax + a^{2} + b^{2})^{\frac{1}{2}}} - \frac{a}{(x^{2} - 2ax + a^{2} + b^{2})^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{\frac{-1}{2}(2x - 2a + 0 + 0)}{(x^{2} - 2ax + a^{2} + b^{2})^{\frac{3}{2}}})x + \frac{1}{(x^{2} - 2ax + a^{2} + b^{2})^{\frac{1}{2}}} - (\frac{\frac{-1}{2}(2x - 2a + 0 + 0)}{(x^{2} - 2ax + a^{2} + b^{2})^{\frac{3}{2}}})a + 0\\=&\frac{-x^{2}}{(x^{2} - 2ax + a^{2} + b^{2})^{\frac{3}{2}}} + \frac{2ax}{(x^{2} - 2ax + a^{2} + b^{2})^{\frac{3}{2}}} - \frac{a^{2}}{(x^{2} - 2ax + a^{2} + b^{2})^{\frac{3}{2}}} + \frac{1}{(x^{2} - 2ax + a^{2} + b^{2})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!