本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数h - lcos(d + arccos(\frac{({a}^{2} + {n}^{2} - {x}^{2})}{(2an)})) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = h - lcos(d + arccos(\frac{\frac{-1}{2}x^{2}}{an} + \frac{\frac{1}{2}n}{a} + \frac{\frac{1}{2}a}{n}))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( h - lcos(d + arccos(\frac{\frac{-1}{2}x^{2}}{an} + \frac{\frac{1}{2}n}{a} + \frac{\frac{1}{2}a}{n}))\right)}{dx}\\=&0 - l*-sin(d + arccos(\frac{\frac{-1}{2}x^{2}}{an} + \frac{\frac{1}{2}n}{a} + \frac{\frac{1}{2}a}{n}))(0 + (\frac{-(\frac{\frac{-1}{2}*2x}{an} + 0 + 0)}{((1 - (\frac{\frac{-1}{2}x^{2}}{an} + \frac{\frac{1}{2}n}{a} + \frac{\frac{1}{2}a}{n})^{2})^{\frac{1}{2}})}))\\=&\frac{lxsin(d + arccos(\frac{\frac{-1}{2}x^{2}}{an} + \frac{\frac{1}{2}n}{a} + \frac{\frac{1}{2}a}{n}))}{(\frac{\frac{-1}{4}x^{4}}{a^{2}n^{2}} + \frac{\frac{1}{2}x^{2}}{a^{2}} + \frac{\frac{1}{2}x^{2}}{n^{2}} - \frac{\frac{1}{4}n^{2}}{a^{2}} - \frac{\frac{1}{4}a^{2}}{n^{2}} + \frac{1}{2})^{\frac{1}{2}}an}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!