本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{({x}^{2} + 2x)}{(x + \frac{ln(x)}{2})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x^{2}}{(x + \frac{1}{2}ln(x))} + \frac{2x}{(x + \frac{1}{2}ln(x))}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x^{2}}{(x + \frac{1}{2}ln(x))} + \frac{2x}{(x + \frac{1}{2}ln(x))}\right)}{dx}\\=&(\frac{-(1 + \frac{\frac{1}{2}}{(x)})}{(x + \frac{1}{2}ln(x))^{2}})x^{2} + \frac{2x}{(x + \frac{1}{2}ln(x))} + 2(\frac{-(1 + \frac{\frac{1}{2}}{(x)})}{(x + \frac{1}{2}ln(x))^{2}})x + \frac{2}{(x + \frac{1}{2}ln(x))}\\=& - \frac{5x}{2(x + \frac{1}{2}ln(x))^{2}} + \frac{2x}{(x + \frac{1}{2}ln(x))} - \frac{x^{2}}{(x + \frac{1}{2}ln(x))^{2}} - \frac{1}{(x + \frac{1}{2}ln(x))^{2}} + \frac{2}{(x + \frac{1}{2}ln(x))}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!