本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(x + 1)}{((30 + x)(29 + x)(28 + x)(27 + x)(26 + x))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x}{(3061524x + 219100x^{2} + 7835x^{3} + x^{5} + 140x^{4} + 17100720)} + \frac{1}{(3061524x + 219100x^{2} + 7835x^{3} + x^{5} + 140x^{4} + 17100720)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x}{(3061524x + 219100x^{2} + 7835x^{3} + x^{5} + 140x^{4} + 17100720)} + \frac{1}{(3061524x + 219100x^{2} + 7835x^{3} + x^{5} + 140x^{4} + 17100720)}\right)}{dx}\\=&(\frac{-(3061524 + 219100*2x + 7835*3x^{2} + 5x^{4} + 140*4x^{3} + 0)}{(3061524x + 219100x^{2} + 7835x^{3} + x^{5} + 140x^{4} + 17100720)^{2}})x + \frac{1}{(3061524x + 219100x^{2} + 7835x^{3} + x^{5} + 140x^{4} + 17100720)} + (\frac{-(3061524 + 219100*2x + 7835*3x^{2} + 5x^{4} + 140*4x^{3} + 0)}{(3061524x + 219100x^{2} + 7835x^{3} + x^{5} + 140x^{4} + 17100720)^{2}})\\=& - \frac{461705x^{2}}{(3061524x + 219100x^{2} + 7835x^{3} + x^{5} + 140x^{4} + 17100720)^{2}} - \frac{24065x^{3}}{(3061524x + 219100x^{2} + 7835x^{3} + x^{5} + 140x^{4} + 17100720)^{2}} - \frac{5x^{5}}{(3061524x + 219100x^{2} + 7835x^{3} + x^{5} + 140x^{4} + 17100720)^{2}} - \frac{565x^{4}}{(3061524x + 219100x^{2} + 7835x^{3} + x^{5} + 140x^{4} + 17100720)^{2}} - \frac{3499724x}{(3061524x + 219100x^{2} + 7835x^{3} + x^{5} + 140x^{4} + 17100720)^{2}} + \frac{1}{(3061524x + 219100x^{2} + 7835x^{3} + x^{5} + 140x^{4} + 17100720)} - \frac{3061524}{(3061524x + 219100x^{2} + 7835x^{3} + x^{5} + 140x^{4} + 17100720)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!