本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(arctan(x))}{x} + ln(sin(arctan(x))) - \frac{{(arctan(x))}^{2}}{2} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{arctan(x)}{x} + ln(sin(arctan(x))) - \frac{1}{2}arctan^{2}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{arctan(x)}{x} + ln(sin(arctan(x))) - \frac{1}{2}arctan^{2}(x)\right)}{dx}\\=&\frac{-arctan(x)}{x^{2}} + \frac{(\frac{(1)}{(1 + (x)^{2})})}{x} + \frac{cos(arctan(x))(\frac{(1)}{(1 + (x)^{2})})}{(sin(arctan(x)))} - \frac{1}{2}(\frac{2arctan(x)(1)}{(1 + (x)^{2})})\\=&\frac{-arctan(x)}{x^{2}} + \frac{1}{(x^{2} + 1)x} + \frac{cos(arctan(x))}{(x^{2} + 1)sin(arctan(x))} - \frac{arctan(x)}{(x^{2} + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!