本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(\frac{(sqrt({x}^{2} + {a}^{2}) + a)}{x}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(\frac{sqrt(x^{2} + a^{2})}{x} + \frac{a}{x})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(\frac{sqrt(x^{2} + a^{2})}{x} + \frac{a}{x})\right)}{dx}\\=&\frac{(\frac{-sqrt(x^{2} + a^{2})}{x^{2}} + \frac{(2x + 0)*\frac{1}{2}}{x(x^{2} + a^{2})^{\frac{1}{2}}} + \frac{a*-1}{x^{2}})}{(\frac{sqrt(x^{2} + a^{2})}{x} + \frac{a}{x})}\\=&\frac{-sqrt(x^{2} + a^{2})}{(\frac{sqrt(x^{2} + a^{2})}{x} + \frac{a}{x})x^{2}} + \frac{1}{(\frac{sqrt(x^{2} + a^{2})}{x} + \frac{a}{x})(x^{2} + a^{2})^{\frac{1}{2}}} - \frac{a}{(\frac{sqrt(x^{2} + a^{2})}{x} + \frac{a}{x})x^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!